Choice Functions and Well-Orderings over the Infinite Binary Tree
نویسندگان
چکیده
We give a new proof showing that it is not possible to define in monadic second-order logic (MSO) a choice function on the infinite binary tree. This result was first obtained by Gurevich and Shelah using set theoretical arguments. Our proof is much simpler and only uses basic tools from automata theory. We show how the result can be used to prove the inherent ambiguity of languages of infinite trees. In a second part we strengthen the result of the non-existence of an MSO-definable well-founded order on the infinite binary tree by showing that every infinite binary tree with a well-founded order has an undecidable MSO-theory.
منابع مشابه
Tree Automata and Automata on Linear Orderings
We show that the inclusion problem is decidable for rational languages of words indexed by scattered countable linear orderings. The method leans on a reduction to the decidability of the monadic second order theory of the infinite binary tree [9]. Mathematics Subject Classification. 68Q45, 03D05.
متن کاملMSO on the Infinite Binary Tree: Choice and Order
We give a new proof showing that it is not possible to define in monadic second-order logic (MSO) a choice function on the infinite binary tree. This result was first obtained by Gurevich and Shelah using set theoretical arguments. Our proof is much simpler and only uses basic tools from automata theory. We discuss some applications of the result concerning unambiguous tree automata and definab...
متن کاملAn improved algorithm to reconstruct a binary tree from its inorder and postorder traversals
It is well-known that, given inorder traversal along with one of the preorder or postorder traversals of a binary tree, the tree can be determined uniquely. Several algorithms have been proposed to reconstruct a binary tree from its inorder and preorder traversals. There is one study to reconstruct a binary tree from its inorder and postorder traversals, and this algorithm takes running time of...
متن کاملAn improved algorithm to reconstruct a binary tree from its inorder and postorder traversals
It is well-known that, given inorder traversal along with one of the preorder or postorder traversals of a binary tree, the tree can be determined uniquely. Several algorithms have been proposed to reconstruct a binary tree from its inorder and preorder traversals. There is one study to reconstruct a binary tree from its inorder and postorder traversals, and this algorithm takes running time of...
متن کاملWell-Founded Recursive Relations
We give a short constructive proof of the fact that certain binary relations > are well-founded, given a lifting à la Ferreira-Zantema and a wellfounded relation .. This construction generalizes several variants of the recursive path ordering on terms and of the Knuth-Bendix ordering. It also applies to other domains, of graphs, of infinite terms, of word and tree automata notably. We then exte...
متن کامل